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Sine-Gordon mean field theory of a Coulomb gas
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Sine-Gordon field theory is used to investigate the phase diagram of a neutral Coulomb gas. A variational
mean-field free energy is constructed and the corresponding phase diagrams in two and three dimensions are
obtained. When analyzed in terms of chemical potential, the sine-Gordon theory predicts the phase diagram
topologically identical to the Monte Carlo simulations and a recently developed DehyieHBjerrum
theory. In two dimensions we find that the infinite-order Kosterlitz-Thouless line terminates in a tricritical
point, after which the metal-insulator transition becomes first order. However, when the transformation from
the chemical potential to the density is made the whole insulating phase is mapped onto zero density.
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The Coulomb gas provides a paradigm for the study othe coexistence curve in between the critical point and the
various models of critical phenomena]. In particular it is  critical end point has both vapdiow-density phaseand
well known that the two-dimensionalD) Coulomb gas liquid (high-density phagethat are conducting. Although
(CG) can be directly used to study the superfluidity transitionMinnhagen’s approach is often characterized as a version of
in “He films, arrays of Josephson junctiof®, melting of ~ renormalization grougRG) theory, this is a misnomer. Its
two-dimensional crystalg3], roughening transitiof4], etc.  basis, which lies in a clever combination of a linear response
Not withstanding its versatility, our full understanding of the formalism with some aspects of sine-Gord¢8G) field
most basic model of Coulomb gas, namely, an ensemble dheory, is much closer to the integral equations of liquid state
hard spheres carrying either positive or negative charges #teory than to the RG theory. The RG methodology is used
their center, is still lacking. more as a tool in studying the solutions of the integral equa-

It is now well accepted that at low density the two- tion found by Minnhagen.
dimensional plasma of equal numbers of positive and nega- An alternative approach suggested by Leeiral. [9] is
tive particles undergoes a Kosterlitz-Thould®sT) metal- based on a recently developed Debye:zkkl-Bjerrum
insulator transition]5]. This transition is of an infinite order (DHB]j) theory[10]. This method, which is intrinsically of
and is characterized by a diverging Debye screening lengthmean-field type, relies on calculating the full electrostatic
Thus, in the low-temperature phagasulatoy all the posi- free energy of the ionic solution based on a linearized
tive and negative particles are associated into the dipolaPoisson-Boltzmann equation. The effects of linearization are
pairs, while in the high-temperature phdsenductoy there  then corrected by allowing for the presence of dipolar pairs,
exists a finite fraction of unassociated, free charges. As ththe density of which is determined through the law of mass
density of particles increases the validity of the KT theoryaction. This theory has proven extremely powerful in eluci-
becomes questionable and the possibility of the KT transitiordating the critical properties of a 3D electrolyte solution
being replaced by some kind of first-order discontinuity haqd10]. In particular, the coexistence curve obtained on its basis
been speculated for a long tini@]. The idea that there can was found to be in an excellent agreement with the recent
exist a discontinuous transition between the insulating andflonte Carlo(MC) simulations[11]. The application of this
conducting phases has gained further credence in view of thiaeory to the 2D plasma has lead to a stark disagreement
increasing computational power and an improving algorithmwith the work of Minnhagen. Whereas Minnhagen has found
design needed for running large-scale simulations of the pathat the KT line terminates in eritical end poinf the DHB]
ticles interacting by a long-range potenti@§. Thus it has theory predicts that it will terminate in #icritical point,
been demonstrated quite convincingly that at high densitieafter which the vapoinsulating phase will coexist with a
the KT infinite-order line becomes unstable and is replacediquid conductingphase[9] (see the inset in Fig.)2
by a first-order coexistence between the low-density insulat- Since the DHBj theory is intrinsically of mean-field type,
ing vapor and the high-density conducting fluidlike phase.one might argue that the fluctuations, such as a variation in
From the theoretical perspective, however, the nature of thidipolar sizes, might modify the phase diagram. This, how-
metamorphosis is far from clear. At the moment there appeagver, is not very likely. It is well known that a properly
to exist two competing views of what happens to the two-constructed mean-field theory almost always retains the to-
dimensional plasma at higher densities. The first of thesgology of the phase diagram upon inclusion of fluctuations.
theories, presented by Minnhagenal. [8], predicts that the One of the few exceptions is when the volume of fluctuations
KT line will terminate in acritical end point while the criti-  is extremely large, such as in the case of transition between
cal point of the coexistence curve separating the low- and thdisordered and lamellar phas¢$2] in magnets or am-
high-density phases lies in the conducting region. It is im-phiphilic systems. This, however, is not the case here. Fur-
portant to note that within Minnhagen’s theory the portion ofthermore, the scaling of dipolar sizes can be included in a
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straightforward way into the DHB] theory, leaving the topol- o © o Ne N-
ogy of the phase diagram unchanggtB]. The metal- zZ=> > N+' ﬁQ(N+,N,), 1)
insulator line then becomes in exact agreement with the KT Ny=0N_=0 T+ N~
theory, in particular, giving the correct critical exponent
: . where
v=1/2 for the divergence of the screening length upon the
dr,

11

1

N
the first-order coexistence curve remains extremely narrovw Q(N, ,N_)= vex;{— %2 aiq;U(rij) |-
in the vicinity of the tricritical point. 17 5
Comparing the predictions of the Minnhagen and DHB] 2
theories to MC Simu|ati0ns, we find that neither one is inHereN:N++N7 is the total number of partic'es immersed
quantitative agreement with MC theory, which finds that thein 3 homogeneous medium of dielectric consténtand
first-order transition appears at a temperature that is signifix = (h%/27rmksT)Y? is the thermal wavelength; the two-
cantly lower and a density that is significantly higher thandimensional interaction term i§(r;;) =Inr;; /a, wherea is
the prediction of either one of the above theofigs Never-  an arbitrary scale and; is the distance between particles
theless, the topology of the phase diagram observed on thend j. The fugacity is related to the chemical potential
basis of DHBj theory is the same as that found in MC theorythrough z.=ef*+ and, along with the temperature
Furthermore, the location of the tricritical point obtained in (8= 1/kgT), determines all thermodynamic characteristics of
the MC theory corresponds closely to the region of the phasthe 2D CG.
diagram where the narrow DHBj coexistence is found to To explore the thermodynamic properties of the above
swell significantly[13]. partition function it is convenient to map it onto the sine-
The current impasse lead us to reexamine some of th@ordon field theory2(b),14]. Thus the partition functior®
foundations on which our understanding of the CG is basedtan be expressed as a functional integral over a real field
Most of the rigorous theorems concerning the nature of in:
teractions inside the neutral plasma are based on the isomor-

approach to the transition. The tricritical point persists, while f
i

phism between the CG and the sine-Gordon field theory Jpqge*Hse

[2(b)_,14]. The mapping _is exact only for th@oint Coulomb e B9= z— ' 3)
gas in the grand canonical ensemble. The short-range repul- J Déb ex _J erE(qu)z

sion is includedost factaby introducing a suitable cutoff on 2

all momentum space integrals. To what extent this procedure

is valid is far from clear. Nevertheless, if the sine-GordonWhere

field theory is renormalized, one obtaiesactlythe KT flow

equations in terms of renormalized fugacity and temperature H :f d2r
. . . . SG

[15]. This equation, however, remains valid only for low

1 , 27 2mpB
5(Vé)"— zcog \—a¢ 4
density(small fugacity.

The attempts to construct a sine-Gordon-based mean-ﬁe[&the effective Hamiltonian for a neutral Coulomb gas and

2 . . .
theory go back to the work of Saifd6], who observed that 2= Z(@/\)%€” V(O is the fugacity renormalized by a
at the mean-field level the sine-Gordon Hamiltonian ac-S€lf-energy term. Itis interesting to note that the saddle point

counts for the metal-insulator transition. In particular SaitoOf the sine-Gordon field theory corresponds to the familiar

was able to show that at low fugacity the Debye Screenini’oisson-B_oltzmann eque_ltion. In this paper, hOV_Ve‘_’ef' we will
ot use this analogy but instead construct a variational bound

length diverged asép=e”"’, where t=(T—Tc)/T. and o the free energy. To this end we shall rely on the Gibbs-

v=1. This should be compared with an equivalent expresgogoliubov-Feynman inequality exploring the convexity of

sion obtained by Kosterlitz and Thouless, but witkk1/2.  free energyG<G=Gy+(H—Hg)o, Whereg, is the free en-

Using field-theoretic methodology, Zharef al. [17] ex-  ergy associated with an arbitrary trial Hamiltonibiy. The

tended the mean-field type of calculations of Saito and foundngular brackets indicate averaging okky: It is particularly

that above a critical fugacity the screening length has a disconvenient to choose as a trial Hamiltonian one having a

continuous jump from a finite to an infinite value. Zhang Gaussian form

et al. then interpreted this point as a tricritical point termi-

nating the continuous line of the metal-insulator transition. H :f d2r
To compare the results of the sine-Gordon-based theory to 0

the MC theory, one must be able to come up with a trans-

formation from the fugacity, which is a natural variable in In this case the free energy and the averaggH —Hg)o are

the field-theoretic description, to the density, which is whatéasily calculated and we find

the MC simulations measure. In the following we present a

m2

1
§(V¢)2 ﬁ(ﬁz : 5

simple variational mean-field theory that accomplishes just BG 1 o 22 1|~

that. It is in the process of transforming the phase diagram A 87Tazln(1+m )= a2 I+ 07 6)
from the temperature fugacity to temperature-density plane

that the surprising results were found. To perform the momentum space integrals the ultraviolet

Our starting point is the grand canonical partition functioncutoff (A =1/a), corresponding to the effect of the hard core,
for point particles of charge:q, was introduced18]. The optimum upper bound is found by
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FIG. 1. Phase diagram of the 2D CG in teel* plane. The
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other formj# 0. The first-order phase transition occurs when
the free energies corresponding to the two local minima be-
come equal. The phase diagram in t& plane for the 2D
Coulomb gas is presented in Fig. 1. It is essentially divided
into two regions, each of which is characterized by a specific
value ofmg: a conducting phase with a finite valuemg and

an insulating phase withm3=0. Separating these two
phases, there is a first-order transition line that ends at a
tricritical point C (T¥ =1/4 andz.=1/16m). Below z. and
close toT} , Eq.(7) can be approximated by

a 1 | T*
—~a ex n

Mg 2"\ 4z
wheret=1—-1/4T* and v=1. WhenT* —1/4 Eq.(8) de-
fines a line of a critical point {p=0o) that separates the

gD = ’ (8)

solid line corresponds to the first-order transition, while the dashe@onducting and insulating phases. This corresponds to the
line is the KT infinite-order metal-insulator transition. The tricritical usual KT line of metal-insulator transitions. Contrary to the

point C is located az=1/167 and T* = 1/4.

minimizing the free energ@ over all possiblen?. We find
that the value ofn2=mg that leads to the optimal approxi-
mation to the real free energy satisfies

, 4mz m3
My=——
0T Tl 14 m2

1/4T*

: (@)

appearance, the first-order line and the critical line join
smoothly at the tricritical point, with the tangency of the
first-order line ensured by the divergence di/dT*
=In|t|/4m whent—0".

As emphasized earlier, in order to compare the results of
our variational treatment with those of MC simulations it is
essential to perform a transformation from the fugacity-
temperature plane to the density-temperature domain. To
this end we note thag is related to pressure and volume
throughG=— PV, while the density isp=zd(BP)/dz. The

whereT* =kgTD/q? is the reduced temperature. The param-transformation is then easily achieved and we find the coex-
eter m3 is inversely proportional to the Debye screeningistence curve presented in Fig. 2. This curve is topologically
length&p inside the electrolyte solution since it can easily beidentical to that obtained on the basis of pure linearized

shown that the effective potential between two test particlepebye-Hickel (DH) theory[9]. In particular we find that the

separated by a distances V(1) ~(#(0)p(r))o. Further-

high-density conducting phase coexists with feeo-density

more, if mj=0(&, =) signifies that there is no screening insulating phase. Namely, although the SG theory accounts
which means that all the ions have paired up forming dipolafor the metal-insulator transition, it cannot give a proper ac-
pairs. If this is the case the presence of an insulating phase ¢unt of the low-density phase. Instead of producing dipoles

ensured.
Indeed, from Eqgs(6) and(7) we find that the free energy
possesses two minima, one of which is fof=0 and the

the oppositely charged ions self-annihilate on contact.
From our treatment it is not clear whether this is a true
property of the SG model or an artifact of the mean-field
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treatment, or maybe a result of the artificial way in which the How can these nonlinearities be included is far from ob-
hard core was introduced into the model. Whichever thevious. Why should the SG theory predict a metal-insulator
case, it is interesting to compare this result with the recentlyransition in the temperature-fugacity plane only to later map
developed DHB;j theory9], which, although also is of a the whole insulating phase onto the zero density? What is the
mean-field type, does predict a finite density for the insulatProper class of diagrams that would have to be summed to
ing phase. The coexistence curve for the DHBj theory isProduce a finite density for the insulating phase? These ques-
presented in the inset of Fig. 2. tions require serious attention if we wish to have a complete
The inability of the SG modefat least at the mean-field theory. The inability of the sine-Gordon model, at least at the
level) to give a proper account of dipoles is also confirmed inMean-field level, to give a proper account of the low-density
d=3. In this case a first-order phase transition at low temphase might also be responsible for the distinct predictions

) I ; between the Minnhagen and DHB;j theories. In particular,
Zﬁqﬁ?)repshggévﬂieposngwagegfgﬁﬁgg émgeaeglgbhageessgz t it can be shown that the variational method that we have

h.?sed corresponds to the summation to all orders of a certain
DHB t_het_)ret|cal[_10] Stuci'iS and S|mulelt|3r[il], the criti class of diagrams. In the case of the standard scalar field
cal point is I'ocallzed all; =0.057 andp; ~0.025. The.re'- heory this is the familiar Hartree-Fock approximatidr®].
sulting coexistence curve that emerges from our variationatyis class of diagrams is obviously insufficient if we are
treatment predicts a critical point af}=0.0565 and

N X " 0 to believe that the SG theory can give a realistic account
p¢ =0.00135. While the critical temperatulg is in agree-  for the phase structure of the Coulomb gas. In his approach
ment with previous results, the critical densipf is too

Minnhagen also relied on the SG theory to calculate the
small. This value should once again be compared with theéharge-charge correlation function. To this end he summed
pure linearized DH theory, which does not account for theanother set of diagrams. If that set was incomplete it could
existence of dipoles; in that case it was found thatlead to some undesirable effects such as, for example, the
T%=0.0625 andp} =1/647=0.005. The underestimate of wrong topology of the phase diagram. At the moment, how-
the critical density clearly indicates that at least at the meanever, this is only a speculation and a renewed theoretical
field level the SG theory, just like the pure DH theory, doeseffort is needed to study the sine-Gordon field theory now

not give a proper account of nonlinear effects such as théhat it is evident that this model, besides the KT transition,

formation of dipoles.

also contains a first-order discontinuity.

[1] J. L. Cardy, inPhase Transitions and Critical Phenomena
edited by C. Domb and J. L. Lebowit&cademic, London,
1987, Vol. 11.

[2] Good reviews are available {@) B. Nienhuis, inPhase Tran-
sitions and Critical Phenomengef.[1]); (b) P. Minnhagen,
Rev. Mod. Phys59, 1001(1987).

[3] D. R. Nelson and B. I. Halperin, Phys. Rev2&, 5312(1980.

[4] S. T. Chui and J. D. Weeks, Phys. RevlR 4978(1976; Y.
Levin, ibid. 43, 10 876(1991).

[5] J. M. Kosterlitz and D. J. Thouless, J. Phys61181(1973;
A. P. Young,ibid. 11, L453 (1978; Phys. Rev. B19, 1855
(1979.

[6] A. N. Berker and D. R. Nelson, Phys. Rev.1B, 2488(1979.

[7] J. M. Calillol and D. Levesque, Phys. Rev.33, 499 (1986;
J.-R. Lee and S. Teitel, Phys. Rev. L&, 1483(1990; Phys.
Rev. B46, 3247(1992; J. P. Valleau, J. Chem. Phyg5, 584
(1992); J. M. Caillol, ibid. 100, 2161(1994); G. Orkoulas and
A. Z. Panagiotopoulosbid. 104, 7205(1996); P. Gupta and S.
Teitel, Report No. cond-mat/9609031.

[8] P. Minnhagen, Phys. Rev. Lef4, 2351(1989; P. Minnhagen
and M. Wallin, Phys. Rev. B36, 5620 (1987; 40, 5109
(1989; J. M. Thijssen and H. J. F. Knopshid. 38, 9080
(1988.

[9] Y. Levin, X. Li,and M. E. Fisher, Phys. Rev. Leff3, 2716
(19949.

[10] M. E. Fisher and Y. Levin, Phys. Rev. Leftl, 3826(1993;

M. E. Fisher, J. Stat. Phy35, 1(1993; G. Stell,ibid. 78, 197
(1994); Y. Levin and M. E. Fisher, Physica 225 164(1996);
B. Guillot and Y. Guissani, Mol. Phy®7, 37 (1996.

[11] A. Z. Panagiotopoulos, Fluid Phase Equilibiig, 97 (1992;

G. Orkoulas and A. Z. Panagiotopoulos, J. Chem. Ph@4,
1452(1994. )

[12] S. A. Brazovskii, Zh. Esp. Teor. Fiz68, 175(1975 [ Sov.
Phys. JETR41, 85 (1975)].

[13] X.-J. Li, Y. Levin, and M. E. Fishefunpublished

[14] S. F. Edwards, Philos. Magd, 1171 (1959; see also D.
Brydges, Commun. Math. Phy§8, 313 (1978; D. Brydges
and P. Federbuslibid. 73, 197 (1980.

[15] H. J. F. Knops and L. W. J. den Ouden, Physicd @3 597
(1980; D. J. Amit, Y. Y. Goldschmidt,and G. Grinstein, J.
Phys. A13, 585(1980; T. Ohta and D. Jasnow, Phys. Rev. B
20, 139(1979; T. Ohta, Prog. Theor. Phy80, 968 (1978.

[16] Y. Saito, Prog. Theor. Phy§2, 927 (1979.

[17] G. M. Zhang, H. Chen,and X. Wu, Phys. Rev.4B, 12 304
(1993; B. W. Xu and Y. M. Zhangjbid. 50, 18 651(1994).

[18] There is no unique relationship between the cutbfénd the
particle size. We adopt an isotropic sharp cutdff1/a. It
should be remembered that the mapping of the Coulomb gas
onto the sine-Gordon field theory is only rigorously valid for
point particles.

[19] G. Parisi,Statistical Field TheoryAddison-Wesley, Reading,
MA, 1988).



